
Performance Efficiency Pillar
AWS Well-Architected Framework

Performance Efficiency Pillar
AWS Well-Architected Framework

Performance Efficiency Pillar: AWS Well-Architected Framework
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Performance Efficiency Pillar
AWS Well-Architected Framework

Table of Contents
Abstract and Introduction 1

Abstract ... 1
Introduction 1

Performance Efficiency 2
Design Principles ... 2
Definition 2

Selection 3
Performance Architecture Selection 3

Resources 5
Compute Architecture Selection 5

Instances 5
Containers ... 6
Functions 6
Resources 8

Storage Architecture Selection 8
Resources 10

Database Architecture Selection 11
Resources 13

Network Architecture Selection 13
Resources 17

Review 18
Evolve Your Workload to Take Advantage of New Releases 19
Resources 19

Videos 19
Monitoring 20

Monitor Your Resources to Ensure That They Are Performing as Expected 21
Resources 22

Videos 22
Documentation 22

Trade-offs 23
Using Trade-offs to Improve Performance 23
Resources 24

Video 24
Documentation 24

Conclusion 25
Contributors ... 26
Further Reading 27
Document Revisions 28

iii

Performance Efficiency Pillar
AWS Well-Architected Framework

Abstract

Performance Efficiency Pillar - AWS
Well-Architected Framework

Publication date: July 2020 (Document Revisions (p. 28))

Abstract
This whitepaper focuses on the performance efficiency pillar of the AWS Well-Architected Framework.
It provides guidance to help customers apply best practices in the design, delivery, and maintenance of
AWS environments.

The performance efficiency pillar addresses best practices for managing production environments. This
paper does not cover the design and management of non-production environments and processes, such
as continuous integration or delivery.

Introduction
The AWS Well-Architected Framework helps you understand the pros and cons of decisions you make
while building workloads on AWS. Using the Framework helps you learn architectural best practices
for designing and operating reliable, secure, efficient, and cost-effective workloads in the cloud. The
Framework provides a way for you to consistently measure your architectures against best practices and
identify areas for improvement. We believe that having well-architected workloads greatly increases the
likelihood of business success.

The framework is based on six pillars:

• Operational Excellence
• Security
• Reliability
• Performance Efficiency
• Cost Optimization
• Sustainability

This paper focuses on applying the principles of the performance efficiency pillar to your workloads. In
traditional, on-premises environments, achieving high and lasting performance is challenging. Using
the principles in this paper will help you build architectures on AWS that efficiently deliver sustained
performance over time.

This paper is intended for those in technology roles, such as chief technology officers (CTOs), architects,
developers, and operations team members. After reading this paper, you’ll understand AWS best
practices and strategies to use when designing a performant cloud architecture. This paper does
not provide implementation details or architectural patterns. However, it does include references to
appropriate resources.

1

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html
http://aws.amazon.com/architecture/well-architected/

Performance Efficiency Pillar
AWS Well-Architected Framework

Design Principles

Performance Efficiency
The performance efficiency pillar focuses on the efficient use of computing resources to meet
requirements, and how to maintain efficiency as demand changes and technologies evolve.

Topics
• Design Principles (p. 2)
• Definition (p. 2)

Design Principles
The following design principles can help you achieve and maintain efficient workloads in the cloud.

• Democratize advanced technologies: Make advanced technology implementation easier for your
team by delegating complex tasks to your cloud vendor. Rather than asking your IT team to learn
about hosting and running a new technology, consider consuming the technology as a service. For
example, NoSQL databases, media transcoding, and machine learning are all technologies that
require specialized expertise. In the cloud, these technologies become services that your team can
consume, allowing your team to focus on product development rather than resource provisioning and
management.

• Go global in minutes: Deploying your workload in multiple AWS Regions around the world allows you
to provide lower latency and a better experience for your customers at minimal cost.

• Use serverless architectures: Serverless architectures remove the need for you to run and maintain
physical servers for traditional compute activities. For example, serverless storage services can act as
static websites (removing the need for web servers) and event services can host code. This removes the
operational burden of managing physical servers, and can lower transactional costs because managed
services operate at cloud scale.

• Experiment more often: With virtual and automatable resources, you can quickly carry out
comparative testing using different types of instances, storage, or configurations.

• Consider mechanical sympathy: Use the technology approach that aligns best with your goals. For
example, consider data access patterns when you select database or storage approaches.

Definition
Focus on the following areas to achieve performance efficiency in the cloud:

• Selection
• Review
• Monitoring
• Trade-offs

Take a data-driven approach to building a high-performance architecture. Gather data on all aspects of
the architecture, from the high-level design to the selection and configuration of resource types.

Reviewing your choices on a regular basis, ensures that you are taking advantage of the continually
evolving AWS Cloud. Monitoring ensures that you are aware of any deviance from expected performance.
Make trade-offs in your architecture to improve performance, such as using compression or caching, or
relaxing consistency requirements.

2

Performance Efficiency Pillar
AWS Well-Architected Framework

Performance Architecture Selection

Selection
The optimal solution for a particular workload varies, and solutions often combine multiple approaches.
Well-architected workloads use multiple solutions and enable different features to improve performance.

AWS resources are available in many types and configurations, which makes it easier to find an approach
that closely matches your needs. You can also find options that are not easily achievable with on-
premises infrastructure. For example, a managed service such as Amazon DynamoDB provides a fully
managed NoSQL database with single-digit millisecond latency at any scale.

Topics
• Performance Architecture Selection (p. 3)
• Compute Architecture Selection (p. 5)
• Storage Architecture Selection (p. 8)
• Database Architecture Selection (p. 11)
• Network Architecture Selection (p. 13)

Performance Architecture Selection
Often, multiple approaches are required to get optimal performance across a workload. Well-architected
systems use multiple solutions and enable different features to improve performance.

Use a data-driven approach to select the patterns and implementation for your architecture and achieve
a cost effective solution. AWS Solutions Architects, AWS Reference Architectures, and AWS Partner
Network (APN) partners can help you select an architecture based on industry knowledge, but data
obtained through benchmarking or load testing will be required to optimize your architecture.

Your architecture will likely combine a number of different architectural approaches (for example, event-
driven, ETL, or pipeline). The implementation of your architecture will use the AWS services that are
specific to the optimization of your architecture's performance. In the following sections we discuss the
four main resource types to consider (compute, storage, database, and network).

Understand the available services and resources: Learn about and understand the wide range of
services and resources available in the cloud. Identify the relevant services and configuration options for
your workload, and understand how to achieve optimal performance.

If you are evaluating an existing workload, you must generate an inventory of the various services
resources it consumes. Your inventory helps you evaluate which components can be replaced with
managed services and newer technologies.

Define a process for architectural choices: Use internal experience and knowledge of the cloud, or
external resources such as published use cases, relevant documentation, or whitepapers to define a
process to choose resources and services. You should define a process that encourages experimentation
and benchmarking with the services that could be used in your workload.

When you write critical user stories for your architecture, you should include performance requirements,
such as specifying how quickly each critical story should execute. For these critical stories, you should
implement additional scripted user journeys to ensure that you have visibility into how these stories
perform against your requirements.

Factor cost requirements into decisions: Workloads often have cost requirements for operation. Use
internal cost controls to select resource types and sizes based on predicted resource need.

3

http://aws.amazon.com/architecture/
http://aws.amazon.com/partners/
http://aws.amazon.com/partners/

Performance Efficiency Pillar
AWS Well-Architected Framework

Performance Architecture Selection

Determine which workload components could be replaced with fully managed services, such as managed
databases, in-memory caches, and other services. Reducing your operational workload allows you to
focus resources on business outcomes.

For cost requirement best practices, refer to the Cost-Effective Resources section of the Cost Optimization
Pillar whitepaper.

Use policies or reference architectures: Maximize performance and efficiency by evaluating internal
policies and existing reference architectures and using your analysis to select services and configurations
for your workload.

Use guidance from your cloud provider or an appropriate partner: Use cloud company resources, such
as solutions architects, professional services, or an appropriate partner to guide your decisions. These
resources can help review and improve your architecture for optimal performance.

Reach out to AWS for assistance when you need additional guidance or product information. AWS
Solutions Architects and AWS Professional Services provide guidance for solution implementation. APN
Partners provide AWS expertise to help you unlock agility and innovation for your business

Benchmark existing workloads: Benchmark the performance of an existing workload to understand how
it performs on the cloud. Use the data collected from benchmarks to drive architectural decisions.

Use benchmarking with synthetic tests to generate data about how your workload’s components
perform. Benchmarking is generally quicker to set up than load testing and is used to evaluate the
technology for a particular component. Benchmarking is often used at the start of a new project, when
you lack a full solution to load test.

You can either build your own custom benchmark tests, or you can use an industry standard test, such
as TPC-DS to benchmark your data warehousing workloads. Industry benchmarks are helpful when
comparing environments. Custom benchmarks are useful for targeting specific types of operations that
you expect to make in your architecture.

When benchmarking, it is important to pre-warm your test environment to ensure valid results. Run the
same benchmark multiple times to ensure that you’ve captured any variance over time.

Because benchmarks are generally faster to run than load tests, they can be used earlier in the
deployment pipeline and provide faster feedback on performance deviations. When you evaluate a
significant change in a component or service, a benchmark can be a quick way to see if you can justify
the effort to make the change. Using benchmarking in conjunction with load testing is important
because load testing informs you about how your workload will perform in production.

Load test your workload: Deploy your latest workload architecture on the cloud using different resource
types and sizes. Monitor the deployment to capture performance metrics that identify bottlenecks or
excess capacity. Use this performance information to design or improve your architecture and resource
selection.

Load testing uses your actual workload so you can see how your solution performs in a production
environment. Load tests must be executed using synthetic or sanitized versions of production data
(remove sensitive or identifying information). Use replayed or pre-programmed user journeys through
your workload at scale that exercise your entire architecture. Automatically carry out load tests as part
of your delivery pipeline, and compare the results against pre-defined KPIs and thresholds. This ensures
that you continue to achieve required performance.

Amazon CloudWatch can collect metrics across the resources in your architecture. You can also collect
and publish custom metrics to surface business or derived metrics. Use CloudWatch to set alarms that
indicate when thresholds are breached and signal that a test is outside of the expected performance.

Using AWS services, you can run production-scale environments to test your architecture aggressively.
Since you only pay for the test environment when it is needed, you can carry out full-scale testing at
a fraction of the cost of using an on-premises environment. Take advantage of the AWS Cloud to test
your workload to see where it fails to scale, or scales in a non-linear way. You can use Amazon EC2

4

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
http://aws.amazon.com/professional-services/
http://aws.amazon.com/partners/
http://aws.amazon.com/partners/
http://www.tpc.org/tpcds/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/ec2/spot/

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

Spot Instances to generate loads at low costs and discover bottlenecks before they are experienced in
production.

When load tests take considerable time to execute, parallelize them using multiple copies of your test
environment. Your costs will be similar, but your testing time will be reduced. (It costs the same to run
one EC2 instance for 100 hours as it does to run 100 instances for one hour.) You can also lower the costs
of load testing by using Spot Instances and selecting Regions that have lower costs than the Regions you
use for production.

The location of your load test clients should reflect the geographic spread of your end users.

Resources
Refer to the following resources to learn more about AWS best practices for load testing.

Videos
• Introducing The Amazon Builders’ Library (DOP328)

Documentation
• AWS Architecture Center
• Amazon S3 Performance Optimization
• Amazon EBS Volume Performance
• AWS CodeDeploy
• AWS CloudFormation
• Load Testing CloudFront
• AWS CloudWatch Dashboards

Compute Architecture Selection
The optimal compute choice for a particular workload can vary based on application design, usage
patterns, and configuration settings. Architectures may use different compute choices for various
components and enable different features to improve performance. Selecting the wrong compute choice
for an architecture can lead to lower performance efficiency.

Evaluate the available compute options: Understand the performance characteristics of the compute-
related options available to you. Know how instances, containers, and functions work, and what
advantages, or disadvantages, they bring to your workload.

In AWS, compute is available in three forms: instances, containers, and functions.

Instances
Instances are virtualized servers, allowing you to change their capabilities with a button or an API call.
Because resource decisions in the cloud aren’t fixed, you can experiment with different server types. At
AWS, these virtual server instances come in different families and sizes, and they offer a wide variety of
capabilities, including solid-state drives (SSDs) and graphics processing units (GPUs).

Amazon Elastic Compute Cloud (Amazon EC2) virtual server instances come in different families and
sizes. They offer a wide variety of capabilities, including solid-state drives (SSDs) and graphics processing

5

http://aws.amazon.com/ec2/spot/
https://www.youtube.com/watch?v=sKRdemSirDM
http://aws.amazon.com/architecture/
https://docs.aws.amazon.com/AmazonS3/latest/dev/PerformanceOptimization.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSPerformance.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/load-testing.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
http://aws.amazon.com/ec2/

Performance Efficiency Pillar
AWS Well-Architected Framework

Containers

units (GPUs). When you launch an EC2 instance, the instance type that you specify determines the
hardware of the host computer used for your instance. Each instance type offers different compute,
memory, and storage capabilities. Instance types are grouped in instance families based on these
capabilities.

Use data to select the optimal EC2 instance type for your workload, ensure that you have the correct
networking and storage options, and consider operating system settings that can improve the
performance for your workload.

Containers
Containers are a method of operating system virtualization that allow you to run an application and its
dependencies in resource-isolated processes.

When running containers on AWS, you have two choices to make. First, choose whether or not you want
to manage servers. AWS Fargate is serverless compute for containers, or Amazon EC2 can be used if
you need control over the installation, configuration, and management of your compute environment.
Second, choose which container orchestrator to use: Amazon Elastic Container Service (ECS) or Amazon
Elastic Kubernetes Service (EKS)

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service that
allows you to automatically execute and manage containers on a cluster of EC2 instances or serverless
instances using AWS Fargate. You can natively integrate Amazon ECS with other services such as Amazon
Route 53, Secrets Manager, AWS Identity and Access Management (IAM), and Amazon CloudWatch.

Amazon Elastic Kubernetes Service (Amazon EKS) is a fully managed Kubernetes service. You can choose
to run your EKS clusters using AWS Fargate, removing the need to provision and manage servers. EKS
is deeply integrated with services such as Amazon CloudWatch, Auto Scaling Groups, AWS Identity and
Access Management (IAM), and Amazon Virtual Private Cloud (VPC).

When using containers, you must use data to select the optimal type for your workload — just as you use
data to select your EC2 or AWS Fargate instance types. Consider container configuration options such as
memory, CPU, and tenancy configuration. To enable network access between container services, consider
using a service mesh such as AWS App Mesh, which standardizes how your services communicate. Service
mesh gives you end-to-end visibility and ensures high-availability for your applications.

Functions
Functions abstract the execution environment from the code you want to execute. For example, AWS
Lambda allows you to execute code without running an instance.

You can use AWS Lambda to run code for any type of application or backend service with zero
administration. Simply upload your code, and AWS Lambda will manage everything required to run
and scale that code. You can set up your code to automatically trigger from other AWS services, call it
directly, or use it with Amazon API Gateway.

Amazon API Gateway is a fully managed service that makes it easy for developers to create, publish,
maintain, monitor, and secure APIs at any scale. You can create an API that acts as a “front door” to your
Lambda function. API Gateway handles all the tasks involved in accepting and processing up to hundreds
of thousands of concurrent API calls, including traffic management, authorization and access control,
monitoring, and API version management.

To deliver optimal performance with AWS Lambda, choose the amount of memory you want for your
function. You are allocated proportional CPU power and other resources. For example, choosing 256 MB
of memory allocates approximately twice as much CPU power to your Lambda function as requesting
128 MB of memory. You can control the amount of time each function is allowed to run (up to a
maximum of 900 seconds).

6

http://aws.amazon.com/fargate/
http://aws.amazon.com/ecs/
http://aws.amazon.com/eks/
http://aws.amazon.com/app-mesh/
http://aws.amazon.com/lambda/
http://aws.amazon.com/api-gateway/

Performance Efficiency Pillar
AWS Well-Architected Framework

Functions

Understand the available compute configuration options: Understand how various options
complement your workload, and which configuration options are best for your system. Examples of these
options include instance family, sizes, features (GPU, I/O), function sizes, container instances, and single
versus multi-tenancy.

When selecting instance families and types, you must also consider the configuration options available to
meet your workload’s needs:

• Graphics Processing Units (GPU) — Using general purpose computing on GPUs (GPGPU), you can
build applications that benefit from the high degree of parallelism that GPUs provide by leveraging
platforms (such as CUDA) in the development process. If your workload requires 3D rendering or video
compression, GPUs enable hardware-accelerated computation and encoding, making your workload
more efficient.

• Field Programmable Gate Arrays (FPGA) — Using FPGAs, you can optimize your workloads by having
custom hardware-accelerated execution for your most demanding workloads. You can define your
algorithms by leveraging supported general programming languages such as C or Go, or hardware-
oriented languages such as Verilog or VHDL.

• AWS Inferentia (Inf1) — Inf1 instances are built to support machine learning inference applications.
Using Inf1 instances, customers can run large scale machine learning inference applications like image
recognition, speech recognition, natural language processing, personalization, and fraud detection.
You can build a model in one of the popular machine learning frameworks such as TensorFlow,
PyTorch, or MXNet and use GPU instances such as P3 or P3dn to train your model. After your machine
learning model is trained to meet your requirements, you can deploy your model on Inf1 instances by
using AWS Neuron, a specialized software development kit (SDK) consisting of a compiler, run-time,
and profiling tools that optimize the machine learning inference performance of Inferentia chips.

• Burstable instance families — Burstable instances are designed to provide moderate baseline
performance and the capability to burst to significantly higher performance when required by
your workload. These instances are intended for workloads that do not use the full CPU often or
consistently, but occasionally need to burst. They are well suited for general-purpose workloads, such
as web servers, developer environments, and small databases. These instances provide CPU credits
that can be consumed when the instance must provide performance. Credits accumulate when the
instance doesn’t need them.

• Advanced computing features — Amazon EC2 gives you access to advanced computing features,
such as managing C-state and P-state registers and controlling turbo-boost of processors. Access to
co- processors allows cryptography operations offloading through AES-NI, or advanced computation
through AVX extensions.

The AWS Nitro System is a combination of dedicated hardware and lightweight hypervisor enabling
faster innovation and enhanced security. Utilize AWS Nitro Systems when available to enable full
consumption of the compute and memory resources of the host hardware. Additionally, dedicated Nitro
Cards enable high speed networking, high speed EBS, and I/O acceleration.

Collect compute-related metrics: One of the best ways to understand how your compute systems are
performing is to record and track the true utilization of various resources. This data can be used to make
more accurate determinations about resource requirements.

Workloads (such as those running on microservices architectures) can generate large volumes of data in
the form of metrics, logs, and events. Determine if your existing monitoring and observability service can
manage the data generated. Amazon CloudWatch can be used to collect, access, and correlate this data
on a single platform from across all your AWS resources, applications, and services running on AWS and
on-premises servers, so you can easily gain system-wide visibility and quickly resolve issues.

Determine the required configuration by right-sizing: Analyze the various performance characteristics
of your workload and how these characteristics relate to memory, network, and CPU usage. Use this data
to choose resources that best match your workload's profile. For example, a memory-intensive workload,
such as a database, could be served best by the r-family of instances. However, a bursting workload can
benefit more from an elastic container system.

7

http://aws.amazon.com/ec2/instance-types/p3/
http://aws.amazon.com/ec2/instance-types/f1/
http://aws.amazon.com/ec2/instance-types/inf1/
http://aws.amazon.com/machine-learning/neuron/
http://aws.amazon.com/ec2/instance-types/t3/
http://aws.amazon.com/ec2/nitro/

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

Use the available elasticity of resources: The cloud provides the flexibility to expand or reduce your
resources dynamically through a variety of mechanisms to meet changes in demand. Combined with
compute-related metrics, a workload can automatically respond to changes and utilize the optimal set of
resources to achieve its goal.

Optimally matching supply to demand delivers the lowest cost for a workload, but you also must plan
for sufficient supply to allow for provisioning time and individual resource failures. Demand can be
fixed or variable, requiring metrics and automation to ensure that management does not become a
burdensome and disproportionately large cost.

With AWS, you can use a number of different approaches to match supply with demand. The Cost
Optimization Pillar whitepaper describes how to use the following approaches to cost:

• Demand-based approach
• Buffer-based approach
• Time-based approach

You must ensure that workload deployments can handle both scale-up and scale-down events. Create
test scenarios for scale-down events to ensure that the workload behaves as expected.

Re-evaluate compute needs based on metrics: Use system-level metrics to identify the behavior and
requirements of your workload over time. Evaluate your workload's needs by comparing the available
resources with these requirements and make changes to your compute environment to best match your
workload's profile. For example, over time a system might be observed to be more memory-intensive
than initially thought, so moving to a different instance family or size could improve both performance
and efficiency.

Resources
Refer to the following resources to learn more about AWS best practices for compute.

Videos
• Amazon EC2 foundations (CMP211-R2)
• Powering next-gen Amazon EC2: Deep dive into the Nitro system
• Deliver high performance ML inference with AWS Inferentia (CMP324-R1)
• Optimize performance and cost for your AWS compute (CMP323-R1)
• Better, faster, cheaper compute: Cost-optimizing Amazon EC2 (CMP202-R1)

Documentation
• Instances:

• Instance Types
• Processor State Control for Your EC2 Instance

• EKS Containers: EKS Worker Nodes
• ECS Containers: Amazon ECS Container Instances
• Functions: Lambda Function Configuration

Storage Architecture Selection
The optimal storage solution for a particular system varies based on the kind of access method (block,
file, or object), patterns of access (random or sequential), throughput required, frequency of access

8

https://www.youtube.com/watch?v=kMMybKqC2Y0
https://www.youtube.com/watch?v=rUY-00yFlE4
https://www.youtube.com/watch?v=17r1EapAxpk
https://www.youtube.com/watch?v=zt6jYJLK8sg
https://www.youtube.com/watch?v=_dvh4P2FVbw
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/processor_state_control.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_instances.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#function-configuration

Performance Efficiency Pillar
AWS Well-Architected Framework

Storage Architecture Selection

(online, offline, archival), frequency of update (WORM, dynamic), and availability and durability
constraints. Well-architected systems use multiple storage solutions and enable different features to
improve performance.

In AWS, storage is virtualized and is available in a number of different types. This makes it easier to
match your storage methods with your needs, and offers storage options that are not easily achievable
with on-premises infrastructure. For example, Amazon S3 is designed for 11 nines of durability. You can
also change from using magnetic hard disk drives (HDDs) to SSDs, and easily move virtual drives from
one instance to another in seconds.

Performance can be measured by looking at throughput, input/output operations per second (IOPS),
and latency. Understanding the relationship between those measurements will help you select the most
appropriate storage solution.

Storage Services Latency Throughput Shareable

Block Amazon EBS,

EC2 instance store

Lowest, consistent Single Mounted on EC2
instance, copies
via snapshots

File system Amazon EFS,
Amazon FSx

Low, consistent Multiple Many clients

Object Amazon S3 Low-latency Web scale Many clients

Archival Amazon S3 Glacier Minutes to hours High No

From a latency perspective, if your data is only accessed by one instance, then you should use block
storage, such as Amazon EBS. Distributed file systems such as Amazon EFS generally have a small latency
overhead for each file operation, so they should be used where multiple instances need access.

Amazon S3 has features than can reduce latency and increase throughput. You can use cross-region
replication (CRR) to provide lower-latency data access to different geographic regions.

From a throughput perspective, Amazon EFS supports highly parallelized workloads (for example, using
concurrent operations from multiple threads and multiple EC2 instances), which enables high levels of
aggregate throughput and operations per second. For Amazon EFS, use a benchmark or load test to
select the appropriate performance mode.

Understand storage characteristics and requirements: Understand the different characteristics (for
example, shareable, file size, cache size, access patterns, latency, throughput, and persistence of data)
that are required to select the services that best fit your workload, such as object storage, block storage,
file storage, or instance storage.

Determine the expected growth rate for your workload and choose a storage solution that will meet
those rates. Object and file storage solutions, such as Amazon S3 and Amazon Elastic File System,
enable unlimited storage; Amazon EBS have pre-determined storage sizes. Elastic volumes allow you to
dynamically increase capacity, tune performance, and change the type of any new or existing current
generation volume with no downtime or performance impact, but it requires OS filesystem changes.

Evaluate available configuration options: Evaluate the various characteristics and configuration
options and how they relate to storage. Understand where and how to use provisioned IOPS, SSDs,
magnetic storage, object storage, archival storage, or ephemeral storage to optimize storage space and
performance for your workload.

Amazon EBS provides a range of options that allow you to optimize storage performance and cost
for your workload. These options are divided into two major categories: SSD-backed storage for
transactional workloads, such as databases and boot volumes (performance depends primarily on IOPS),

9

http://aws.amazon.com/ebs
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
http://aws.amazon.com/efs/
http://aws.amazon.com/fsx/
http://aws.amazon.com/s3/
http://aws.amazon.com/glacier/
http://aws.amazon.com/ebs

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

and HDD-backed storage for throughput-intensive workloads, such as MapReduce and log processing
(performance depends primarily on MB/s).

SSD-backed volumes include the highest performance provisioned IOPS SSD for latency-sensitive
transactional workloads and general purpose SSD that balance price and performance for a wide variety
of transactional data.

Amazon S3 transfer acceleration enables fast transfer of files over long distances between your client
and your S3 bucket. Transfer acceleration leverages Amazon CloudFront globally distributed edge
locations to route data over an optimized network path. For a workload in an S3 bucket that has
intensive GET requests, use Amazon S3 with CloudFront. When uploading large files, use multi-part
uploads with multiple parts uploading at the same time to help maximize network throughput.

Amazon Elastic File System (Amazon EFS) provides a simple, scalable, fully managed elastic NFS file
system for use with AWS Cloud services and on-premises resources. To support a wide variety of cloud
storage workloads, Amazon EFS offers two performance modes: general purpose performance mode,
and max I/O performance mode. There are also two throughput modes to choose from for your file
system, Bursting Throughput, and Provisioned Throughput. To determine which settings to use for your
workload, see the Amazon EFS User Guide.

Amazon FSx provides two file systems to choose from: Amazon FSx for Windows File Server for
enterprise workloads and Amazon FSx for Lustre for high-performance workloads. FSx is SSD-backed and
is designed to deliver fast, predictable, scalable, and consistent performance. Amazon FSx file systems
deliver sustained high read and write speeds and consistent low latency data access. You can choose the
throughput level you need to match your workload’s needs.

Make decisions based on access patterns and metrics: Choose storage systems based on your
workload's access patterns and configure them by determining how the workload accesses data. Increase
storage efficiency by choosing object storage over block storage. Configure the storage options you
choose to match your data access patterns.

How you access data impacts how the storage solution performs. Select the storage solution that aligns
best to your access patterns, or consider changing your access patterns to align with the storage solution
to maximize performance.

Creating a RAID 0 (zero) array allows you to achieve a higher level of performance for a file system
than what you can provision on a single volume. Consider using RAID 0 when I/O performance is more
important than fault tolerance. For example, you could use it with a heavily used database where data
replication is already set up separately.

Select appropriate storage metrics for your workload across all of the storage options consumed for
the workload. When utilizing filesystems that use burst credits, create alarms to let you know when you
are approaching those credit limits. You must create storage dashboards to show the overall workload
storage health.

For storage systems that are a fixed sized, such as Amazon EBS or Amazon FSx, ensure that you are
monitoring the amount of storage used versus the overall storage size and create automation if possible
to increase the storage size when reaching a threshold

Resources
Refer to the following resources to learn more about AWS best practices for storage.

Videos
• Deep dive on Amazon EBS (STG303-R1)
• Optimize your storage performance with Amazon S3 (STG343)

10

http://aws.amazon.com/s3/transfer-acceleration/
http://aws.amazon.com/efs/
https://docs.aws.amazon.com/efs/latest/ug/performance.html
http://aws.amazon.com/fsx/
http://aws.amazon.com/fsx/windows/
http://aws.amazon.com/fsx/lustre/
https://www.youtube.com/watch?v=wsMWANWNoqQ
https://www.youtube.com/watch?v=54AhwfME6wI

Performance Efficiency Pillar
AWS Well-Architected Framework
Database Architecture Selection

Documentation
• Amazon EBS:

• Amazon EC2 Storage
• Amazon EBS Volume Types
• I/O Characteristics

• Amazon S3: Request Rate and Performance Considerations
• Amazon Glacier: Amazon Glacier Documentation
• Amazon EFS: Amazon EFS Performance
• Amazon FSx:

• Amazon FSx for Lustre Performance
• Amazon FSx for Windows File Server Performance

Database Architecture Selection
The optimal database solution for a system varies based on requirements for availability, consistency,
partition tolerance, latency, durability, scalability, and query capability. Many systems use different
database solutions for various sub-systems and enable different features to improve performance.
Selecting the wrong database solution and features for a system can lead to lower performance
efficiency.

Understand data characteristics: Understand the different characteristics of data in your workload.
Determine if the workload requires transactions, how it interacts with data, and what its performance
demands are. Use this data to select the best performing database approach for your workload (for
example, relational databases, NoSQL Key-value, document, wide column, graph, time series, or in-
memory storage).

You can choose from many purpose-built database engines including relational, key-value, document,
in-memory, graph, time series, and ledger databases. By picking the best database to solve a specific
problem (or a group of problems), you can break away from restrictive one-size-fits-all monolithic
databases and focus on building applications to meet the needs of your customers.

Relational databases store data with predefined schemas and relationships between them. These
databases are designed to support ACID (atomicity, consistency, isolation, durability) transactions, and
maintain referential integrity and strong data consistency. Many traditional applications, enterprise
resource planning (ERP), customer relationship management (CRM), and e-commerce use relational
databases to store their data. You can run many of these database engines on Amazon EC2, or choose
from one of the AWS managed database services: Amazon Aurora, Amazon RDS, and Amazon Redshift.

Key-value databases are optimized for common access patterns, typically to store and retrieve large
volumes of data. These databases deliver quick response times, even in extreme volumes of concurrent
requests.

High-traffic web apps, e-commerce systems, and gaming applications are typical use-cases for key-value
databases. In AWS, you can utilize Amazon DynamoDB, a fully managed, multi-Region, multi-master,
durable database with built-in security, backup and restore, and in-memory caching for internet-scale
applications

In-memory databases are used for applications that require real-time access to data. By storing data
directly in memory, these databases deliver microsecond latency to applications for whom millisecond
latency is not enough. You may use in-memory databases for application caching, session management,
gaming leaderboards, and geospatial applications. Amazon ElastiCache is a fully managed in-memory
data store, compatible with Redis or Memcached.

11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Storage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSVolumeTypes.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ebs-io-characteristics.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/request-rate-perf-considerations.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/introduction.html
https://docs.aws.amazon.com/efs/latest/ug/performance.html
https://docs.aws.amazon.com/fsx/latest/LustreGuide/performance.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/performance.html
http://aws.amazon.com/products/databases/
http://aws.amazon.com/rds/aurora
http://aws.amazon.com/rds
http://aws.amazon.com/redshift
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/elasticache/
http://aws.amazon.com/elasticache/redis/
http://aws.amazon.com/elasticache/memcached

Performance Efficiency Pillar
AWS Well-Architected Framework
Database Architecture Selection

A document database is designed to store semi structured data as JSON-like documents. These
databases help developers build and update applications such as content management, catalogs, and
user profiles quickly. Amazon DocumentDB is a fast, scalable, highly available, and fully managed
document database service that supports MongoDB workloads.

A wide column store is a type of NoSQL database. It uses tables, rows, and columns, but unlike a
relational database, the names and format of the columns can vary from row to row in the same table.
You typically see a wide column store in high scale industrial apps for equipment maintenance, fleet
management, and route optimization. Amazon Keyspaces (for Apache Cassandra) is a wide column
scalable, highly available, and managed Apache Cassandra–compatible database service.

Graph databases are for applications that must navigate and query millions of relationships between
highly connected graph datasets with millisecond latency at large scale. Many companies use graph
databases for fraud detection, social networking, and recommendation engines. Amazon Neptune is a
fast, reliable, fully managed graph database service that makes it easy to build and run applications that
work with highly connected datasets.

Time-series databases efficiently collect, synthesize, and derive insights from data that changes over
time. IoT applications, DevOps, and industrial telemetry can utilize time-series databases. Amazon
Timestream is a fast, scalable, fully managed time series database service for IoT and operational
applications that makes it easy to store and analyze trillions of events per day.

Ledger databases provide a centralized and trusted authority to maintain a scalable, immutable, and
cryptographically verifiable record of transactions for every application. We see ledger databases used
for systems of record, supply chain, registrations, and even banking transactions. Amazon Quantum
Ledger Database (QLDB) is a fully managed ledger database that provides a transparent, immutable, and
cryptographically verifiable transaction log owned by a central trusted authority. Amazon QLDB tracks
every application data change and maintains a complete and verifiable history of changes over time.

Evaluate the available options: Evaluate the services and storage options that are available as part
of the selection process for your workload's storage mechanisms. Understand how, and when, to use a
given service or system for data storage. Learn about available configuration options that can optimize
database performance or efficiency, such as provisioned IOPs, memory and compute resources, and
caching.

Database solutions generally have configuration options that allow you to optimize for the type of
workload. Using benchmarking or load testing, identify database metrics that matter for your workload.
Consider the configuration options for your selected database approach such as storage optimization,
database level settings, memory, and cache.

Evaluate database caching options for your workload. The three most common types of database caches
are the following:

• Database integrated caches: Some databases (such as Amazon Aurora) offer an integrated cache that
is managed within the database engine and has built-in write-through capabilities.

• Local caches: A local cache stores your frequently used data within your application. This speeds up
your data retrieval and removes network traffic associated with retrieving data, making data retrieval
faster than other caching architectures.

• Remote caches: Remote caches are stored on dedicated servers and typically built upon key/value
NoSQL stores such as Redis and Memcached. They provide up to a million requests per second per
cache node.

For Amazon DynamodDB workloads, DynamoDB Accelerator (DAX) provides a fully managed in-
memory cache. DAX is an in-memory cache that delivers fast read performance for your tables at
scale by enabling you to use a fully managed in-memory cache. Using DAX, you can improve the read
performance of your DynamoDB tables by up to 10 times — taking the time required for reads from
milliseconds to microseconds, even at millions of requests per second.

12

http://aws.amazon.com/documentdb/
http://aws.amazon.com/mcs/
http://aws.amazon.com/neptune/
http://aws.amazon.com/timestream/
http://aws.amazon.com/timestream/
http://aws.amazon.com/qldb/
http://aws.amazon.com/qldb/
http://aws.amazon.com/dynamodb/dax/

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

Collect and record database performance metrics: Use tools, libraries, and systems that record
performance measurements related to database performance. For example, measure transactions
per second, slow queries, or system latency introduced when accessing the database. Use this data to
understand the performance of your database systems.

Instrument as many database activity metrics as you can gather from your workload. These metrics
may need to be published directly from the workload or gathered from an application performance
management service. You can use AWS X-Ray to analyze and debug production, distributed applications,
such as those built using a microservices architecture. An X-Ray trace can include segments which
encapsulate all the data points for single component. For example, when your application makes a
call to a database in response to a request, it creates a segment for that request with a sub-segment
representing the database call and its result. The sub-segment can contain data such as the query, table
used, timestamp, and error status. Once instrumented, you should enable alarms for your database
metrics that indicate when thresholds are breached.

Choose data storage based on access patterns: Use the access patterns of the workload to decide which
services and technologies to use. For example, utilize a relational database for workloads that require
transactions, or a key-value store that provides higher throughput but is eventually consistent where
applicable.

Optimize data storage based on access patterns and metrics: Use performance characteristics and
access patterns that optimize how data is stored or queried to achieve the best possible performance.
Measure how optimizations such as indexing, key distribution, data warehouse design, or caching
strategies impact system performance or overall efficiency.

Resources
Refer to the following resources to learn more about AWS best practices for databases.

Videos
• AWS purpose-built databases (DAT209-L)
• Amazon Aurora storage demystified: How it all works (DAT309-R)
• Amazon DynamoDB deep dive: Advanced design patterns (DAT403-R1)

Documentation
• AWS Database Caching
• Cloud Databases with AWS
• Amazon Aurora best practices
• Amazon Redshift performance
• Amazon Athena top 10 performance tips
• Amazon Redshift Spectrum best practices
• Amazon DynamoDB best practices
• Amazon DynamoDB Accelerator

Network Architecture Selection
The optimal network solution for a workload varies based on latency, throughput requirements, jitter,
and bandwidth. Physical constraints, such as user or on-premises resources, determine location options.
These constraints can be offset with edge locations or resource placement.

13

http://aws.amazon.com/xray/
https://www.youtube.com/watch?v=q81TVuV5u28
https://www.youtube.com/watch?v=uaQEGLKtw54
https://www.youtube.com/watch?v=6yqfmXiZTlM
http://aws.amazon.com/caching/database-caching/
http://aws.amazon.com/products/databases/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.BestPractices.html
https://docs.aws.amazon.com/redshift/latest/dg/c_challenges_achieving_high_performance_queries.html
http://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
http://aws.amazon.com/blogs/big-data/10-best-practices-for-amazon-redshift-spectrum/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/BestPractices.html
http://aws.amazon.com/dynamodb/dax/

Performance Efficiency Pillar
AWS Well-Architected Framework

Network Architecture Selection

On AWS, networking is virtualized and is available in a number of different types and configurations.
This makes it easier to match your networking methods with your needs. AWS offers product features
(for example, Enhanced Networking, Amazon EC2 networking optimized instances, Amazon S3 transfer
acceleration, and dynamic Amazon CloudFront) to optimize network traffic. AWS also offers networking
features (for example, Amazon Route 53 latency routing, Amazon VPC endpoints, AWS Direct Connect,
and AWS Global Accelerator) to reduce network distance or jitter.

Understand how networking impacts performance: Analyze and understand how network-related
features impact workload performance. For example, network latency often impacts the user experience,
and not providing enough network capacity can bottleneck workload performance.

Since the network is between all application components, it can have large positive and negative impacts
on application performance and behavior. There are also applications that are heavily dependent on
network performance such as High Performance Computing (HPC) where deep network understanding
is important to increase cluster performance. You must determine the workload requirements for
bandwidth, latency, jitter, and throughput.

Evaluate available networking features: Evaluate networking features in the cloud that may increase
performance. Measure the impact of these features through testing, metrics, and analysis. For example,
take advantage of network-level features that are available to reduce latency, network distance, or jitter.

Many services commonly offer features to optimize network performance. Consider product features
such as EC2 instance network capability, enhanced networking instance types, Amazon EBS-optimized
instances, Amazon S3 transfer acceleration, and dynamic CloudFront to optimize network traffic.

AWS Global Accelerator is a service that improves global application availability and performance using
the AWS global network. It optimizes the network path, taking advantage of the vast, congestion-
free AWS global network. It provides static IP addresses that make it easy to move endpoints between
Availability Zones or AWS Regions without needing to update your DNS configuration or change client-
facing applications

Amazon S3 content acceleration is a feature that lets external users benefit from the networking
optimizations of CloudFront to upload data to Amazon S3. This makes it easy to transfer large amounts
of data from remote locations that don’t have dedicated connectivity to the AWS Cloud.

Newer EC2 instances can leverage enhanced networking. N-series EC2 instances, such as M5n and
M5dn, leverage the fourth generation of custom Nitro card and Elastic Network Adapter (ENA) device to
deliver up to 100 Gbps of network throughput to a single instance. These instances offer 4x the network
bandwidth and packet process compared to the base M5 instances and are ideal for network intensive
applications. Customers can also enable Elastic Fabric Adapter (EFA) on certain instance sizes of M5n and
M5dn instances for low and consistent network latency.

Amazon Elastic Network Adapters (ENA) provide further optimization by delivering 20 Gbps of network
capacity for your instances within a single placement group. Elastic Fabric Adapter (EFA) is a network
interface for Amazon EC2 instances that enables you to run workloads requiring high levels of inter-
node communications at scale on AWS. With EFA, High Performance Computing (HPC) applications using
the Message Passing Interface (MPI) and Machine Learning (ML) applications using NVIDIA Collective
Communications Library (NCCL) can scale to thousands of CPUs or GPUs.

Amazon EBS optimized instances use an optimized configuration stack and provide additional, dedicated
capacity for Amazon EBS I/O. This optimization provides the best performance for your EBS volumes by
minimizing contention between Amazon EBS I/O and other traffic from your instance.

Latency-based routing (LBR) for Amazon Route 53 helps you improve your workload’s performance for
a global audience. LBR works by routing your customers to the AWS endpoint (for EC2 instances, Elastic
IP addresses, or ELB load balancers) that provides the fastest experience based on actual performance
measurements of the different AWS Regions where your workload is running.

Amazon VPC endpoints provide reliable connectivity to AWS services (for example, Amazon S3) without
requiring an internet gateway or a Network Address Translation (NAT) instance.

14

http://aws.amazon.com/global-accelerator/

Performance Efficiency Pillar
AWS Well-Architected Framework

Network Architecture Selection

Choose appropriately sized dedicated connectivity or VPN for hybrid workloads: When there is a
requirement for on-premise communication, ensure that you have adequate bandwidth for workload
performance. Based on bandwidth requirements, a single dedicated connection or a single VPN might
not be enough, and you must enable traffic load balancing across multiple connections.

You must estimate the bandwidth and latency requirements for your hybrid workload. These numbers
will drive the sizing requirements for AWS Direct Connect or your VPN endpoints.

AWS Direct Connect provides dedicated connectivity to the AWS environment, from 50 Mbps up to 10
Gbps. This gives you managed and controlled latency and provisioned bandwidth so your workload can
connect easily and in a performant way to other environments. Using one of the AWS Direct Connect
partners, you can have end-to-end connectivity from multiple environments, thus providing an extended
network with consistent performance.

The AWS Site-to-Site VPN is a managed VPN service for VPCs. When a VPN connection is created, AWS
provides tunnels to two different VPN endpoints. With AWS Transit Gateway, you can simplify the
connectivity between multiple VPCs and also connect to any VPC attached to AWS Transit Gateway with
a single VPN connection. AWS Transit Gateway also enables you to scale beyond the 1.25Gbps IPsec VPN
throughput limit by enabling equal cost multi-path (ECMP) routing support over multiple VPN tunnels.

Leverage load-balancing and encryption offloading: Distribute traffic across multiple resources or
services to allow your workload to take advantage of the elasticity that the cloud provides. You can also
use load balancing for offloading encryption termination to improve performance and to manage and
route traffic effectively.

When implementing a scale-out architecture where you want to use multiple instances for service
content, you can leverage load balancers inside your Amazon VPC. AWS provides multiple models for
your applications in the ELB service. Application Load Balancer is best suited for load balancing of HTTP
and HTTPS traffic and provides advanced request routing targeted at the delivery of modern application
architectures, including microservices and containers.

Network Load Balancer is best suited for load balancing of TCP traffic where extreme performance is
required. It is capable of handling millions of requests per second while maintaining ultra-low latencies,
and it is optimized to handle sudden and volatile traffic patterns.

Elastic Load Balancing provides integrated certificate management and SSL/TLS decryption, allowing
you the flexibility to centrally manage the SSL settings of the load balancer and offload CPU intensive
work from your workload.

Choose network protocols to optimize network traffic: Make decisions about protocols for
communication between systems and networks based on the impact to the workload’s performance.

There is a relationship between latency and bandwidth to achieve throughput. If your file transfer is
using TCP, higher latencies will reduce overall throughput. There are approaches to fix this with TCP
tuning and optimized transfer protocols, some approaches use UDP.

Choose location based on network requirements: Use the cloud location options available to reduce
network latency or improve throughput. Utilize AWS Regions, Availability Zones, placement groups, and
edge locations such as Outposts, Local Zones, and Wavelength, to reduce network latency or improve
throughput.

The AWS Cloud infrastructure is built around Regions and Availability Zones. A Region is a physical
location in the world having multiple Availability Zones.

Availability Zones consist of one or more discrete data centers, each with redundant power, networking,
and connectivity, housed in separate facilities. These Availability Zones offer you the ability to operate
production applications and databases that are more highly available, fault tolerant, and scalable than
would be possible from a single data center

Choose the appropriate Region or Regions for your deployment based on the following key elements:

15

http://aws.amazon.com/directconnect/
http://aws.amazon.com/vpn/
http://aws.amazon.com/transit-gateway/
http://aws.amazon.com/elasticloadbalancing/

Performance Efficiency Pillar
AWS Well-Architected Framework

Network Architecture Selection

• Where your users are located: Choosing a Region close to your workload’s users ensures lower latency
when they use the workload.

• Where your data is located: For data-heavy applications, the major bottleneck in latency is data
transfer. Application code should execute as close to the data as possible.

• Other constraints: Consider constraints such as security and compliance.

Amazon EC2 provides placement groups for networking. A placement group is a logical grouping of
instances within a single Availability Zone. Using placement groups with supported instance types
and an Elastic Network Adapter (ENA) enables workloads to participate in a low-latency, 25 Gbps
network. Placement groups are recommended for workloads that benefit from low network latency,
high network throughput, or both. Using placement groups has the benefit of lowering jitter in network
communications.

Latency-sensitive services are delivered at the edge using a global network of edge locations. These
edge locations commonly provide services such as content delivery network (CDN) and domain name
system (DNS). By having these services at the edge, workloads can respond with low latency to requests
for content or DNS resolution. These services also provide geographic services such as geo targeting of
content (providing different content based on the end users’ location), or latency-based routing to direct
end users to the nearest Region (minimum latency).

Amazon CloudFront is a global CDN that can be used to accelerate both static content such as
images, scripts, and videos, as well as dynamic content such as APIs or web applications. It relies on a
global network of edge locations that will cache the content and provide high-performance network
connectivity to your users. CloudFront also accelerates many other features such as content uploading
and dynamic applications, making it a performance addition to all applications serving traffic over the
internet. Lambda@Edge is a feature of Amazon CloudFront that will let you run code closer to users of
your workload, which improves performance and reduces latency.

Amazon Route 53 is a highly available and scalable cloud DNS web service. It’s designed to give
developers and businesses an extremely reliable and cost-effective way to route end users to internet
applications by translating names, like www.example.com, into numeric IP addresses, like 192.168.2.1,
that computers use to connect to each other. Route 53 is fully compliant with IPv6.

AWS Outposts is designed for workloads that need to remain on-premises due to latency requirements,
where you want that workload to run seamlessly with the rest of your other workloads in AWS. AWS
Outposts are fully managed and configurable compute and storage racks built with AWS-designed
hardware that allow you to run compute and storage on-premises, while seamlessly connecting to AWS’s
broad array of services in the cloud.

AWS Local Zones are a new type of AWS infrastructure designed to run workloads that require single-
digit millisecond latency, like video rendering and graphics intensive, virtual desktop applications. Local
Zones allow you to gain all the benefits of having compute and storage resources closer to end-users.

AWS Wavelength is designed to deliver ultra-low latency applications to 5G devices by extending AWS
infrastructure, services, APIs, and tools to 5G networks. Wavelength embeds storage and compute inside
telco providers 5G networks to help your 5G workload if it requires single-digit millisecond latency, such
as IoT devices, game streaming, autonomous vehicles, and live media production.

Use edge services to reduce latency and to enable content caching. Ensure that you have configured
cache control correctly for both DNS and HTTP/HTTPS to gain the most benefit from these approaches.

Optimize network configuration based on metrics: Use collected and analyzed data to make informed
decisions about optimizing your network configuration. Measure the impact of those changes and use
the impact measurements to make future decisions.

Enable VPC Flow logs for all VPC networks that are used by your workload. VPC Flow Logs are a feature
that allows you to capture information about the IP traffic going to and from network interfaces in your
VPC. VPC Flow Logs help you with a number of tasks, such as troubleshooting why specific traffic is not

16

http://aws.amazon.com/cloudfront/
http://aws.amazon.com/lambda/edge/
http://aws.amazon.com/outposts/
http://aws.amazon.com/about-aws/global-infrastructure/localzones/
http://aws.amazon.com/wavelength/

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

reaching an instance, which in turn helps you diagnose overly restrictive security group rules. You can use
flow logs as a security tool to monitor the traffic that is reaching your instance, to profile your network
traffic, and to look for abnormal traffic behaviors.

Use networking metrics to make changes to networking configuration as the workload evolves. Cloud
based networks can be quickly re-built, so evolving your network architecture over time is necessary to
maintain performance efficiency.

Resources
Refer to the following resources to learn more about AWS best practices for networking.

Videos
• Connectivity to AWS and hybrid AWS network architectures (NET317-R1)
• Optimizing Network Performance for Amazon EC2 Instances (CMP308-R1)

Documentation
• Transitioning to Latency-Based Routing in Amazon Route 53
• Networking Products with AWS
• Amazon EC2

• Amazon EBS – Optimized Instances
• EC2 Enhanced Networking on Linux
• EC2 Enhanced Networking on Windows
• EC2 Placement Groups
• Enabling Enhanced Networking with the Elastic Network Adapter (ENA) on Linux Instances

• VPC
• Transit Gateway
• VPC Endpoints
• VPC Flow Logs

• Elastic Load Balancers
• Application Load Balancer
• Network Load Balancer

17

https://www.youtube.com/watch?v=eqW6CPb58gs
https://www.youtube.com/watch?v=DWiwuYtIgu0
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/TutorialTransitionToLBR.html
http://aws.amazon.com/products/networking/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking-ena.html
https://docs.aws.amazon.com/vpc/latest/tgw
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

Performance Efficiency Pillar
AWS Well-Architected Framework

Review
When architecting workloads, there are finite options that you can choose from. However, over time, new
technologies and approaches become available that could improve the performance of your workload.
In the cloud, it’s much easier to experiment with new features and services because your infrastructure is
code.

To adopt a data-driven approach to architecture you should implement a performance review process
that considerers the following:

• Infrastructure as code: Define your infrastructure as code using approaches such as AWS
CloudFormation templates. The use of templates allows you to place your infrastructure into source
control alongside your application code and configurations. This allows you to apply the same
practices you use to develop software in your infrastructure so you can iterate rapidly.

• Deployment pipeline: Use a continuous integration/continuous deployment (CI/CD) pipeline (for
example, source code repository, build systems, deployment, and testing automation) to deploy your
infrastructure. This enables you to deploy in a repeatable, consistent, and low-cost fashion as you
iterate.

• Well-defined metrics: Set up your metrics and monitor to capture key performance indicators (KPIs).
We recommend that you use both technical and business metrics. For websites or mobile apps, key
metrics are capturing time to first byte or rendering. Other generally applicable metrics include thread
count, garbage collection rate, and wait states. Business metrics, such as the aggregate cumulative cost
per request, can alert you to ways to drive down costs. Carefully consider how you plan to interpret
metrics. For example, you could choose the maximum or 99th percentile instead of the average.

• Performance test automatically: As part of your deployment process, automatically trigger
performance tests after the quicker running tests have passed successfully. The automation should
create a new environment, set up initial conditions such as test data, and then execute a series of
benchmarks and load tests. Results from these tests should be tied back to the build so you can
track performance changes over time. For long running tests, you can make this part of the pipeline
asynchronous from the rest of the build. Alternatively, you could execute performance tests overnight
using Amazon EC2 Spot Instances.

• Load generation: You should create a series of test scripts that replicate synthetic or prerecorded
user journeys. These scripts should be idempotent and not coupled, and you might need to include
“pre- warming” scripts to yield valid results. As much as possible, your test scripts should replicate the
behavior of usage in production. You can use software or software-as-a-service (SaaS) solutions to
generate the load. Consider using AWS Marketplace solutions and Spot Instances — they can be cost-
effective ways to generate the load.

• Performance visibility: Key metrics should be visible to your team, especially metrics against each
build version. This allows you to see any significant positive or negative trend over time. You should
also display metrics on the number of errors or exceptions to make sure you are testing a working
system.

• Visualization: Use visualization techniques that make it clear where performance issues, hot spots,
wait states, or low utilization is occurring. Overlay performance metrics over architecture diagrams —
call graphs or code can help identify issues quickly.

This performance review process can be implemented as a simple extension of your existing deployment
pipeline and then evolved over time as your testing requirements become more sophisticated. For future
architectures, you can generalize your approach and reuse the same process and artifacts.

Architectures performing poorly is usually the result of a non-existent or broken performance review
process. If your architecture is performing poorly, implementing a performance review process will allow
you to apply Deming’s plan-do-check-act (PDCA) cycle to drive iterative improvement.

18

https://en.wikipedia.org/wiki/PDCA

Performance Efficiency Pillar
AWS Well-Architected Framework

Evolve Your Workload to Take Advantage of New Releases

Topics
• Evolve Your Workload to Take Advantage of New Releases (p. 19)
• Resources (p. 19)

Evolve Your Workload to Take Advantage of New
Releases

Take advantage of the continual innovation at AWS driven by customer need. We release new Regions,
edge locations, services, and features regularly. Any of these releases could positively improve the
performance efficiency of your architecture.

Stay up-to-date on new resources and services: Evaluate ways to improve performance as new services,
design patterns, and product offerings become available. Determine which of these could improve
performance or increase the efficiency of the workload through ad-hoc evaluation, internal discussion, or
external analysis.

Define a process to evaluate updates, new features, and services from AWS. For example, building proof-
of-concepts that use new technologies or consulting with an internal group. When trying new ideas or
services, run performance tests to measure the impact that they have on the efficiency or performance
of the workload. Take advantage of the flexibility that you have in AWS to test new ideas or technologies
frequently with minimal cost or risk.

Define a process to improve workload performance: Define a process to evaluate new services,
design patterns, resource types, and configurations as they become available. For example, run existing
performance tests on new instance offerings to determine their potential to improve your workload.

Your workload's performance has a few key constraints. Document these so that you know what kinds
of innovation might improve the performance of your workload. Use this information when learning
about new services or technology as it becomes available to identify ways to alleviate constraints or
bottlenecks.

Evolve workload performance over time: As an organization, use the information gathered through the
evaluation process to actively drive adoption of new services or resources when they become available.

Use the information you gather when evaluating new services or technologies to drive change. As
your business or workload changes, performance needs also change. Use data gathered from your
workload metrics to evaluate areas where you can get the biggest gains in efficiency or performance, and
proactively adopt new services and technologies to keep up with demand.

Resources
Refer to the following resources to learn more about AWS best practices for benchmarking.

Videos
• Amazon Web Services YouTube Channel
• AWS Online Tech Talks YouTube Channel
• AWS Events YouTube Channel

19

https://www.youtube.com/channel/UCd6MoB9NC6uYN2grvUNT-Zg
https://www.youtube.com/user/AWSwebinars
https://www.youtube.com/channel/UCdoadna9HFHsxXWhafhNvKw

Performance Efficiency Pillar
AWS Well-Architected Framework

Monitoring
After you implement your architecture you must monitor its performance so that you can remediate
any issues before they impact your customers. Monitoring metrics should be used to raise alarms when
thresholds are breached.

Monitoring at AWS consists of five distinct phases, which are explained in more detail in the Reliability
Pillar whitepaper:

• Generation – scope of monitoring, metrics, and thresholds
• Aggregation – creating a complete view from multiple sources
• Real-time processing and alarming – recognizing and responding
• Storage – data management and retention policies
• Analytics – dashboards, reporting, and insights

CloudWatch is a monitoring service for AWS Cloud resources and the workloads that run on AWS.
You can use CloudWatch to collect and track metrics, collect and monitor log files, and set alarms.
CloudWatch can monitor AWS resources such as EC2 instances and RDS DB instances, as well as custom
metrics generated by your workloads and services, and any log files your applications generate. You
can use CloudWatch to gain system-wide visibility into resource utilization, application performance,
and operational health. You can use these insights to react quickly and keep your workload running
smoothly.

CloudWatch dashboards enable you to create reusable graphs of AWS resources and custom metrics so
you can monitor operational status and identify issues at a glance.

Ensuring that you do not see false positives is key to an effective monitoring solution. Automated
triggers avoid human error and can reduce the time it takes to fix problems. Plan for game days, where
simulations are conducted in the production environment, to test your alarm solution and ensure that it
correctly recognizes issues.

Monitoring solutions fall into two types: active monitoring (AM) and passive monitoring (PM). AM and
PM complement each other to give you a full view of how your workload is performing.

Active monitoring simulates user activity in scripted user journeys across critical paths in your product.
AM should be continuously performed in order to test the performance and availability of a workload.
AM complements PM by being continuous, lightweight, and predictable. It can be run across all
environments (especially pre-production environments) to identify problems or performance issues
before they impact end users.

Passive monitoring is commonly used with web-based workloads. PM collects performance metrics from
the browser (non-web-based workloads can use a similar approach). You can collect metrics across all
users (or a subset of users), geographies, browsers, and device types. Use PM to understand the following
issues:

• User experience performance: PM provides you with metrics on what your users are experiencing,
which gives you a continuous view into how production is working, as well as a view into the impact of
changes over time.

• Geographic performance variability: If a workload has a global footprint and users access the
workload from all around the world, using PM can enable you to spot a performance problem
impacting users in a specific geography.

• The impact of API use: Modern workloads use internal APIs and third-party APIs. PM provides the
visibility into the use of APIs so you can identify performance bottlenecks that originate not only from
internal APIs, but also from third-party API providers.

20

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html

Performance Efficiency Pillar
AWS Well-Architected Framework
Monitor Your Resources to Ensure

That They Are Performing as Expected
CloudWatch provides the ability to monitor and send notification alarms. You can use automation to
work around performance issues by triggering actions through Amazon Kinesis, Amazon Simple Queue
Service (Amazon SQS), and AWS Lambda.

Topics
• Monitor Your Resources to Ensure That They Are Performing as Expected (p. 21)
• Resources (p. 22)

Monitor Your Resources to Ensure That They Are
Performing as Expected

System performance can degrade over time. Monitor system performance to identify degradation and
remediate internal or external factors, such as the operating system or application load.

Record performance-related metrics: Use a monitoring and observability service to record
performance-related metrics. For example, record database transactions, slow queries, I/O latency, HTTP
request throughput, service latency, or other key data.

Identify the performance metrics that matter for your workload and record them. This data is an
important part of being able to identify which components are impacting overall performance or
efficiency of the workload.

Working back from the customer experience, identify metrics that matter. For each metric, identify the
target, measurement approach, and priority. Use these to build alarms and notifications to proactively
address performance-related issues.

Analyze metrics when events or incidents occur: In response to (or during) an event or incident, use
monitoring dashboards or reports to understand and diagnose the impact. These views provide insight
into which portions of the workload are not performing as expected.

When you write critical user stories for your architecture, include performance requirements, such as
specifying how quickly each critical story should execute. For these critical stories, implement additional
scripted user journeys to ensure that you know how these stories perform against your requirement

Establish Key Performance Indicators (KPIs) to measure workload performance: Identify the KPIs that
indicate whether the workload is performing as intended. For example, an API-based workload might use
overall response latency as an indication of overall performance, and an e-commerce site might choose
to use the number of purchases as its KPI.

Document the performance experience required by customers, including how customers will judge the
performance of the workload. Use these requirements to establish your key performance indicators
(KPIs), which will indicate how the system is performing overall.

Use monitoring to generate alarm-based notifications: Using the performance-related key
performance indicators (KPIs) that you defined, use a monitoring system that generates alarms
automatically when these measurements are outside expected boundaries.

Amazon CloudWatch can collect metrics across the resources in your architecture. You can also collect
and publish custom metrics to surface business or derived metrics. Use CloudWatch or a third-party
monitoring service to set alarms that indicate when thresholds are breached; the alarms signal that a
metric is outside of the expected boundaries.

Review metrics at regular intervals: As routine maintenance, or in response to events or incidents,
review which metrics are collected. Use these reviews to identify which metrics were key in addressing
issues and which additional metrics, if they were being tracked, would help to identify, address, or
prevent issues.

21

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

As part of responding to incidents or events, evaluate which metrics were helpful in addressing the issue
and which metrics could have helped that are not currently being tracked. Use this to improve the quality
of metrics you collect so that you can prevent or more quickly resolve future incidents.

Monitor and alarm proactively: Use key performance indicators (KPIs), combined with monitoring and
alerting systems, to proactively address performance-related issues. Use alarms to trigger automated
actions to remediate issues where possible. Escalate the alarm to those able to respond if automated
response is not possible. For example, you may have a system that can predict expected key performance
indicators (KPI) values and alarm when they breach certain thresholds, or a tool that can automatically
halt or roll back deployments if KPIs are outside of expected values.

Implement processes that provide visibility into performance as your workload is running. Build
monitoring dashboards and establish baseline norms for performance expectations to determine if the
workload is performing optimally.

Resources
Refer to the following resources to learn more about AWS best practices for monitoring to promote
performance efficiency.

Videos
• Cut through the chaos: Gain operational visibility and insight (MGT301-R1)

Documentation
• AWS X-Ray Documentation
• Amazon CloudWatch Documentation

22

https://www.youtube.com/watch?v=nLYGbotqHd0
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html

Performance Efficiency Pillar
AWS Well-Architected Framework

Using Trade-offs to Improve Performance

Trade-offs
When you architect solutions, think about trade-offs to ensure an optimal approach. Depending on
your situation, you could trade consistency, durability, and space for time or latency, to deliver higher
performance.

Using AWS, you can go global in minutes and deploy resources in multiple locations across the globe to
be closer to your end users. You can also dynamically add read-only replicas to information stores (such
as database systems) to reduce the load on the primary database.

AWS offers caching solutions such as Amazon ElastiCache, which provides an in-memory data store or
cache, and Amazon CloudFront, which caches copies of your static content closer to end users. Amazon
DynamoDB Accelerator (DAX) provides a read-through/write-through distributed caching tier in front of
Amazon DynamoDB, supporting the same API, but providing sub-millisecond latency for entities that are
in the cache.

Topics
• Using Trade-offs to Improve Performance (p. 23)
• Resources (p. 24)

Using Trade-offs to Improve Performance
When architecting solutions, actively considering trade-offs enables you to select an optimal approach.
Often you can improve performance by trading consistency, durability, and space for time and latency.
Trade-offs can increase the complexity of your architecture and require load testing to ensure that a
measurable benefit is obtained.

Understand the areas where performance is most critical: Understand and identify areas where
increasing the performance of your workload will have a positive impact on efficiency or customer
experience. For example, a website that has a large amount of customer interaction can benefit from
using edge services to move content delivery closer to customers.

Learn about design patterns and services: Research and understand the various design patterns and
services that help improve workload performance. As part of the analysis, identify what you could trade
to achieve higher performance. For example, using a cache service can help to reduce the load placed
on database systems; however, it requires some engineering to implement safe caching or possible
introduction of eventual consistency in some areas.

Learn which performance configuration options are available to you and how they could impact the
workload. Optimizing the performance of your workload depends on understanding how these options
interact with your architecture and the impact they will have on both measured performance and the
performance perceived by users.

The Amazon Builders’ Library provides readers with a detailed description of how Amazon builds and
operates technology. These free articles are written by Amazon’s senior engineers and cover topics
across architecture, software delivery, and operations. For example, you can see how Amazon automates
software delivery to achieve over 150 million deployments a year, or how Amazon’s engineers implement
principles such as shuffle sharding to build resilient systems that are highly available and fault tolerant.

Identify how trade-offs impact customers and efficiency: When evaluating performance-related
improvements, determine which choices will impact your customers and workload efficiency. For
example, if using a key-value data store increases system performance, it is important to evaluate how
the eventually consistent nature of it will impact customers.

23

http://aws.amazon.com/builders-library/

Performance Efficiency Pillar
AWS Well-Architected Framework

Resources

Identify areas of poor performance in your system through metrics and monitoring. Determine how
you can make improvements, what trade-offs those improvements bring, and how they impact the
system and the user experience. For example, implementing caching data can help dramatically improve
performance but requires a clear strategy for how and when to update or invalidate cached data to
prevent incorrect system behavior.

Measure the impact of performance improvements: As changes are made to improve performance,
evaluate the collected metrics and data. Use this information to determine impact that the performance
improvement had on the workload, the workload’s components, and your customers. This measurement
helps you understand the improvements that result from the tradeoff, and helps you determine if any
negative side-effects were introduced.

A well-architected system uses a combination of performance related strategies. Determine which
strategy will have the largest positive impact on a given hotspot or bottleneck. For example, sharding
data across multiple relational database systems could improve overall throughput while retaining
support for transactions and, within each shard, caching can help to reduce the load.

Use various performance-related strategies: Where applicable, utilize multiple strategies to improve
performance. For example, using strategies like caching data to prevent excessive network or database
calls, using read-replicas for database engines to improve read rates, sharding or compressing data
where possible to reduce data volumes, and buffering and streaming of results as they are available to
avoid blocking.

As you make changes to the workload, collect and evaluate metrics to determine the impact of those
changes. Measure the impacts to the system and to the end-user to understand how your trade-offs
impact your workload. Use a systematic approach, such as load testing, to explore whether the tradeoff
improves performance.

Resources
Refer to the following resources to learn more about AWS best practices for caching.

Video
• Introducing The Amazon Builders’ Library (DOP328)

Documentation
• Amazon Builders’ Library
• Best Practices for Implementing Amazon ElastiCache

24

https://www.youtube.com/watch?v=sKRdemSirDM
http://aws.amazon.com/builders-library
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/BestPractices.html

Performance Efficiency Pillar
AWS Well-Architected Framework

Conclusion
Achieving and maintaining performance efficiency requires a data-driven approach. You should actively
consider access patterns and trade-offs that will allow you to optimize for higher performance. Using a
review process based on benchmarks and load tests allows you to select the appropriate resource types
and configurations. Treating your infrastructure as code enables you to rapidly and safely evolve your
architecture, while you use data to make fact-based decisions about your architecture. Putting in place
a combination of active and passive monitoring ensures that the performance of your architecture does
not degrade over time.

AWS strives to help you build architectures that perform efficiently while delivering business value. Use
the tools and techniques discussed in this paper to ensure success.

25

Performance Efficiency Pillar
AWS Well-Architected Framework

Contributors
The following individuals and organizations contributed to this document:

• Eric Pullen, Solutions Architect, Amazon Web Services
• Julien Lépine, Specialist SA Manager, Amazon Web Services
• Ronnen Slasky, Solutions Architect, Amazon Web Services
• Aden Leirer, Content Program Manager Well-Architected, Amazon Web Services

26

Performance Efficiency Pillar
AWS Well-Architected Framework

Further Reading
For additional help, consult the following sources:

• AWS Well-Architected Framework
• AWS Architecture Center

27

http://aws.amazon.com/architecture/well-architected/
http://aws.amazon.com/architecture/

Performance Efficiency Pillar
AWS Well-Architected Framework

Document Revisions
To be notified about updates to this whitepaper, subscribe to the RSS feed.

update-history-change update-history-description update-history-date

Minor update (p. 1) Added Sustainability Pillar to
introduction.

December 2, 2021

Minor updates (p. 28) Updated links. March 10, 2021

Minor updates (p. 28) Changed AWS Lambda timeout
to 900 seconds and corrected
name of Amazon Keyspaces (for
Apache Cassandra).

October 5, 2020

Minor update (p. 28) Fixed broken link. July 15, 2020

Updates for new
Framework (p. 28)

Major review and update of
content

July 8, 2020

Whitepaper updated (p. 28) Minor update for grammatical
issues

July 1, 2018

Whitepaper updated (p. 28) Refreshed the whitepaper to
reflect changes in AWS

November 1, 2017

Initial publication (p. 28) Performance Efficiency Pillar
- AWS Well-Architected
Framework published.

November 1, 2016

28

	Performance Efficiency Pillar
	Table of Contents
	Performance Efficiency Pillar - AWS Well-Architected Framework
	Abstract
	Introduction

	Performance Efficiency
	Design Principles
	Definition

	Selection
	Performance Architecture Selection
	Resources
	Videos
	Documentation

	Compute Architecture Selection
	Instances
	Containers
	Functions
	Resources
	Videos
	Documentation

	Storage Architecture Selection
	Resources
	Videos
	Documentation

	Database Architecture Selection
	Resources
	Videos
	Documentation

	Network Architecture Selection
	Resources
	Videos
	Documentation

	Review
	Evolve Your Workload to Take Advantage of New Releases
	Resources
	Videos

	Monitoring
	Monitor Your Resources to Ensure That They Are Performing as Expected
	Resources
	Videos
	Documentation

	Trade-offs
	Using Trade-offs to Improve Performance
	Resources
	Video
	Documentation

	Conclusion
	Contributors
	Further Reading
	Document Revisions

